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Center-of-Mass Energy Removal in Relativistic
Three-Quark Models of the Proton

George L. Strobel1

A variant of a squared three-body Dirac equation is used to determine center-of-mass
energy effects in independent particle motion approximations for three quarks in the
nucleon. A scalar linear flux tube potential is used to confine the quarks. The relativistic
nearly massless three-quark system, in the rest frame where the total momentum is zero,
has a squared energy that is 3/5 the value compared to when the quarks are assumed
to move independently. This is smaller than the 2/3 energy ratio determined using the
non-relativistic harmonic oscillator model. This analytic model has one parameter, the
flux tube constant. Choosing the flux tube constant to reproduce the proton rest energy,
results in the analytic wave function well reproducing the proton axial charge and rms
charge radius. The proton magnetic moment predicted is 2.235, lower than experiment.

1. INTRODUCTION

In the nonrelativistic three-body problem with harmonic oscillator potentials,
one can remove the center-of-mass energy from the Hamiltonian using Jacobi rela-
tive coordinates such that the kinetic energy of the center-of-mass motion separates
out into a single term (Ballot and Ripelle, 1980; Baz and Zhukov, 1970). Removal
of this term from the Schroedinger equation for a system of three equal masses,
shows that the system ground state, when the center of mass is fixed, has an energy
reduced by 2/3 compared to the energy with independent particle motion. When
dealing with small current quark masses (Particle Data Group, 1994), the bound
quark problem must be treated relativistically. The one-body Dirac equation for a
massless scalar-plus-zeroth-component-of-a-vector quadratic potential has simple
analytic solutions (Ferreiraet al., 1980; Ferreira and Zagury, 1971, 1977; Smith and
Tassie, 1971; Tegenet al., 1982). The three-quark system with independent mo-
tion wave functions using this potential has been corrected for the center-of-mass
motion (Tegenet al., 1983) by use of a momentum projecting technique. There
the composite three-quark wave function was required to have total momentum
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zero. This momentum projection technique did not treat the lower components of
the Dirac wave function properly. One can express the three-body Dirac equation
kinetic energy in terms of the momentum of the center of mass and the momenta
of the relative motion, using Jacobi coordinates (Strobel, 1996), but the operators
do not commute relativistically. Provided one stays in the center-of-momentum
frame where the total momentum is zero, one can still solve the three-body Dirac
equation, with interactions, for system energies without any center-of-mass energy
present. This frame is called the rest frame, as the total momentum is zero. This
was done for two-body interactions that were an extension of the scalar-plus-vector
one-body quadratic potentials. Analytic solutions were obtained (Strobel, 1996)
for arbitrary mass, for the case of all three quark masses being the same.

A scalar linear flux-tube potential model (Carlsonet al., 1983) inspired from
QCD considerations has frequently been used to describe bound quarks. Such a po-
tential, combined with an empirical short-range one-gluon exchange-potential term
may describe quark dynamics in the nucleon. After a hyperangular integration is
done, the three-body Dirac equation with this potential can be solved by an infinite
power series expansion technique, with recurrence relations determining the ex-
pansion coefficients (Strobel, 1999). Convergence comes only for the correct guess
of the system energy. However, a more nearly analytic approach is sought here.

A squared Hamiltonian approach (Abe and Fujita, 1987) will be used here to
get analytic wave functions appropriate for a scalar linear potential. The idea is:
Given H9 = E9, if we square the operator, we obtainH29 = E29, and if both
are solved exactly, one obtains the same wave function in each case. We seek, and
will find, a squared Hamiltonian that we can solve, both with independent particle
motion, and again with the center-of-mass motion removed.

With a linear scalar potential, the one-body Dirac equation can be written as

[α · p+ β(m+ br )]ψ = Eψ. (1)

wherem is the quark mass, andb the flux tube constant.α andβ are the Dirac
matrices. The quark mass is assumed to be comparable to the current quark masses
(Particle Data Group, 1994) as determined by experiments. For the up and down
quarks, these masses are taken as very small compared to the proton rest energy.
Squaring this one-body equation results in

[ p2+ b2r 2+m2+ 2mbr+ iβα · r ]ψ = E2ψ. (2)

If this squared Hamiltonian equation is solved exactly, the solution is the same
as solving the Dirac linear Hamiltonian equation. The only nondiagonal term is the
α · r term. This is the component ofα in the unit radial direction. Fujita and Abe
(1987) pioneered the approximation of neglecting this nondiagonal commutator
term. With zero mass, the retained terms are just the diagonal harmonic oscillator
Hamiltonian. The solution including only the diagonal terms results in uncou-
pled harmonic oscillator wave functions for the upper and the lower components.
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Inclusion of the off diagonal term to first order only, couples the upper and lower
components and determines their relative magnitude without changing the shape of
the uncoupled wave functions. The resulting calculated energy of such an approach,
for massless quarks, is good to three-digit accuracy, as shown in Critchfield’s
exact numerical solution of the same linear Hamiltonian (Critchfield, 1976). This
approximation will be utilized in a three-quark model to estimate the removal of
center-of-mass energies in a relativistic three-body Dirac equation. With a quark
model of the nucleon, this potential is a reasonable model of a flux-tube poten-
tial (Carlsonet al., 1983), which minimizes the flux-tube length connecting and
confining the three quarks within the nucleon.

We consider the three-body Dirac equation with linear scalar one body po-
tentials as the Hamiltonian for a three-quark model of the nucleon. This work
is restricted to a (1/2+)3 configuration of the three quarks, which is assumed to
describe the state of lowest energy for the nucleon. Solving for the third particles
energy, and then squaring, resolving for the second particles energy (Moshinsky
and Smirnov, 1996) and resquaring twice more results in a harmonic oscillator
type equation. The nonrelativistic center-of-mass energy can be removed, by re-
moving the center-of-mass momentum from most terms of the resulting equation.
We will consider solely those terms where this removal is possible at first, and
then include the rest in a perturbation approach. The resulting wave function will
be tested by comparing calculated properties of the proton to experiment, such as
its rest energy, magnetic moment, axial charge, and rms charge radius.

2. THEORY

We consider the three-quark Dirac equation Hamiltonian:

[α1 · p1+ β1(m+ br1)+ α2 · p2+ β2(m+ br2)

+ α3 · p3+ β3(m+ br3)]9 = E9 (3)

where the subscripts refer to particle label, and9 is the composite three-quark
wave function. This composite three-quark wave function has eight components.
This equation is solved for the Hamiltonian of the third quark, and then squared.
Then the result is solved for the Hamiltonian of the second quark, and resquared,
as described in Moshinsky and Smirnov’s book (Moshinsky and Smirnov, 1996).
The resulting 4th order equation for the energy squared can be written as

[(E2−W2)4+ V ]9 = 0 (4)

where

52
s = p2

s + b2r 2
s +m2+ 2brs + iβsαs · rs. (5)
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Heres is 1, 2, or 3 and again refers to particle label.W2 is defined as

W2 = 52
1+52

2+52
3. (6)

Neglecting the off-diagonal terms inW2 results in an uncoupled three-body
harmonic oscillator system from which the center-of-mass energy can be removed.
Further, each of the eight components of this uncoupled three-body system can
be solved exactly in a hyperspherical approach, resulting in a single configuration
describing the system. The remainder of the equation defining9, from which the
nonrelativistic center-of-mass energy cannot easily be removed, is calledV . It is

V = −8(E4+W4)
(
52
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. (7)

The plan is to solve Eq. (4) using perturbation theory, first neglecting the termV .
One then can solve the unperturbed equation, after extracting the fourth root as

[E2−W2]9 = 0. (8)

With the solution to the unperturbed equation found, the perturbation theory is
used to solve Eq. (4) to determine the energy of the perturbed system. This is done
twice, once with independent particle motion, and then with the center-of-mass
energy removed.

3. SOLUTION WITH INDEPENDENT PARTICLE MOTION

Consider the (1/2+) one-body state, where the upper component has orbital
angular momentumL = 0 and the lower component hasL = 1. The uncoupled
eigenfunctions are separately normalized harmonic oscillator wave functions. In-
cluding the off diagonal term to Eq. (2), and writing the wave function as a column
vector,

ψ = |A1R0(r )|
(9)

|B1R1(r )|
whereA1, B1 are determined from solving the determinant of the matrix for the
square of the one-body energy,E1b:⌈(

3b− E2
1b

)− nb
⌉ |A1|

(10)⌊− nb
(
5b− E2

1b

)⌋ |B1| = 0

wheren2 = 8/3π . This comes from the overlap of the uncoupled upper and lower
radial wave functions. The relative normalization is thatA2

1+ B2
1 sum to unity.
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Including the 2mbr term as a perturbation for smallm, and expressingm in units
of b1/2, one obtains(
E2

1b −m2b
)
/b = 4+ [14m/3π1/2] − [1+ (8/3π )+ (4m/3π1/2)+ 4m2/π ]1/2.

(11)

For the massless case, this one-body squared energy is 2.64117b. Now we solve
the squared Hamiltonian, Eq. (8), for the case of independent motion of three
particles. Since the particles move independently, the solution for the three-body
system energy squared, calledW2

0 , asV is neglected is

W2
0 = 3 E2

1b. (12)

The composite three-quark wave function has eight components, the relative
amplitude of which can be found from expanding out the expression (A1+ B1)3.
The upper, upper, upper component of the composite wave function that survives in
the nonrelativistic limit has a relative amplitude ofA3

1. The lower cubed component
of the wave function has a relative amplitude ofB3

1, etc.A1 andB1 are independent
of the flux-tube constantb.

The quartic equation forE2 includingV is now solved with independent par-
ticle motion, using the same approximations leading to Eqs. (9) and (10). Namely,
the off diagonal terms are treated to first order only, and the composite three-
quark wave function is a product of harmonic oscillator wave functions. Including
the potentialV , Eq. (8) has four solutions for the energy squared: a triple root,
E2

ip = 3E2
1b, and a fourth solutionE2

ip = 9E2
1b. With the assumption of indepen-

dent particle motion, the wave function including theV term is the same as the
wave function omitting theV term. The energy solution of interest is the fourth,
for which we can take the square root, and obtain for independent particle motion,
Eip = 3E1b.

4. SOLUTION IN CENTER-OF-MOMENTUM FRAME

Neglecting the perturbation,V , and the nondiagonal terms inW2, for massless
quarks, the quartic equation for the energy squared uncouples. In the center-of-
momentum frame, the total momentum is zero and the center-of-mass energy is
removed from the kinetic energy terms. Hyperspherical coordinates are used and
the three quadratic potential energy terms inW2 combine as

b2
(
r 2

1 + r 2
2 + r 2

3

) = b2ρ2. (13)

where the hyperradius isρ. We express each of the eight components of the com-
posite three-quark wave function in hyperspherical coordinates asAkUk(Ä)Rk(ρ)/
ρ5/2. The total orbital angular momentum in each component is denoted byk. Ak is
a temporarily unknown relative normalization coupling constant. The second fac-
tor accounts for the hyperangular dependence (Baz and Zhukov, 1970), the third is
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the generally unknown hyperradial dependence of the wave function component.
For the uncoupled massless case, it is a simple harmonic oscillator wave function
as it satisfies

[−d2/dρ2+ b2ρ2+3(3+ 1)/ρ2]Rk = U2Rk. (14)

where3 = k+ 3/2 andk = L1+ L2+ L3 is the sum of the orbital angular mo-
menta in each component. The uncoupled eigenvalueU2 = b (2k+ 6). The norm
of the uncoupled wave functions is∫

dρ R2
k(ρ) = 1. (15)

The hyperradial part of the uncoupled wave function is

Rk(ρ) = Nk ρ
k+5/2 exp(−bρ2/2) (16)

where the uncoupled normalization determines

N2
k = 2bk+3/(k+ 2)! (17)

The eight various components havek values that range from 0 to 3. Including
the non diagonal terms ofW2 couples the previously uncoupled components.
Symmetries (Strobel, 1996) allow the transposed wave function to be written as a
row vector:

ψ t = [ A0R0, A1R1, A1R1, A2R2, A1R1, A2R2, A2R2, A3R3]. (18)

Including the off diagonal elements ofW2 to first order allows the relative
amplitudes of the componentsA0, A1, A2, andA3 to be determined by setting to
zero the determinant:

|(6− X) −√3 0 0 | |A0|
| −√3 (8− X) −1 0 | |A1|
|0 −4 (10− X) −1/

√
5 | |A2|

|0 0 −3
√

5 (12− X)| |A3|
= 0 (19)

HereX is the squared eigen-energy over the string constantb. The smallest root
is sought, and one findsX = 4.7573 approximately. Comparing Eqs. (10) and
(19), the nonrelativistic ratio of 2/3 for the energy without and with independent
particle motion is seen in the 6 of the first element of (19) and three times the
first element of (10). If only the components surviving in the nonrelativistic limit
mattered, that 6–9 ratio of the energy squared would be recovered here. However,
the lower components of the wave function matter with small quark masses. When
the center of mass is constrained to not move, the lower components have a larger
contribution to the normalization, than in the independent particle motion case.
Including the smaller components, we findX/W2

0 = 4.7573/7.9235= 0.6004 or
about 3/5.
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The rest frame eigenvalue of Eq. (4) is now obtained in a perturbative ap-
proach. The perturbationV is evaluated by replacing52

s by y equalscE2
1b. Thus

the operator is replaced by its eigenvalue assuming independent particle motion,
but now reduced by a factorc, taken as 3/5. This reduction is associated with
center-of-mass motion and justified by being determined analytically whenV was
neglected. WithW2

0 = 3cE2
1b, then includingV in the fourth order equation for

the energy squared, one finds

[E8− 12yE6+ 30y2E4− 28y3E2+ 9y4]9 = 0 (20)

This has the solutionsE2 = cE2
1b, a triple root, and the desired rootE2 = 9cE2

1b.
Thus the energy with the center-of-mass energy approximately removed is found
asE = [3/5]1/2Eip.

5. NUCLEON PROPERTIES IN THE SQUARED FLUX TUBE
HAMILTONIAN APPROACH

The contribution to the normalization, of the eight components of the wave
function are, with independent particle motion,S= 0.65389,P = 0.2984,D =
0.04539, andF = 0.0023, while in the rest frame,S= 0.59789,P = 0.30776,
D = 0.08885, andF = 0.00549. HereS, P, D, andF , are labels denoting 0, 1, 2, or
3 units of orbital angular momentum in the (1/2+)3 configuration composite wave
function component. The upper component contributes 0.86795 to the norm with
independent particle motion. In the rest frame, the upper component contributes
0.83268 to the normalization. The removal of the center-of-mass motion thus
increases the lower component contribution to the norm.

The axial charge calculated is Ga= 1.373, with independent particle mo-
tion, and Ga= 1.2969 in the rest frame. Both values are reasonable, but the rest
frame provides closer agreement with the experimental value of 1.26 (Particle Data
Group, 1994). Other properties of the proton within the rest frame can be calcu-
lated, given a value for the flux tube constant. The proton rest energy is reproduced
if the flux tube constantb, is taken as 0.061716 GeV2. With this value for the flux
tube constant, the rms charge radius is then calculated as 0.8339 fermi, in good
agreement with experiment. The magnetic moment calculated is 2.235 nuclear
magnetons. This is less than experiment (2.793). An anomalous quark magnetic
moment can be invoked to explain the difference (Strobel, 1998).

6. SUMMARY

A scalar linear potential is used to bind three quarks within the nucleon. The
Dirac Hamiltonian is squared, resquared, and again resquared resulting in a fourth
order equation for the energy squared. This problem is solved for independent
particle motion, and for motion in the rest frame where the total momentum of
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the system is zero. Including only diagonal terms to the squared Hamiltonian, one
obtains uncoupled harmonic oscillator solutions. Including the off diagonal terms
to lowest order couples the upper and lower component with definite coefficients.
The energy squared of the three-particle system is reduced by 3/5 when the center-
of-mass motion is removed. This difference from 2/3 comes from the inclusion
of the lower components of the composite three quark wave function. The rest
frame energy of the three quark system is then estimated as 3 (3/5)1/2E1b. E1b is
the one-body Dirac equation energy. This rest frame energy is larger than the 2/3
energy ratio determined using the nonrelativistic harmonic oscillator model. This
analytic model has one parameter, the flux tube constant. Choosing the flux tube
constant to reproduce the proton rest energy, allows the analytic wave function to
well reproduce the proton axial charge and rms charge radius. The proton magnetic
moment predicted is 2.235, lower than experiment.
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